CREST and 4th Ritsumeikan-Florence Workshop on Risk Simulation and Related Topics Beppu, Japan, March 2012 Monique Jeanblanc, UEVE

Financial support from Fédération Bancaire Française

Lectures on Credit Risk

- 1. Models for single default
- 2. Contagion models
- 3. Credit derivatives

Models for single default

- 1. Structural Approach
- 2. Hazard process Approach
- 3. Cox Processes
- 4. Density Models

Defaultable Claims

Let us first describe a generic defaultable claim:

- 1. **Default** of an entity occurs at time τ . Default may be bankruptcy or other financial distress.
- 2. At maturity T the **promised payoff** X is paid only if the default did not occurred.
- 3. The **promised dividends** A are paid up to default time.
- 4. The **recovery claim** \widetilde{X} is received at time T, if default occurs prior to or at the claim's maturity date T.
- 5. The **recovery process** Z specifies the recovery payoff at time of default, if default occurs prior to or at the maturity date T.

Structural Approach

• A risky asset V, which may represent the value of the firm, is traded. The riskless asset (the savings account B) satisfies

 $dB_t = r_t B_t dt.$

• The value of the firm V satisfies a Stochastic Differential Equation

- In the Black and Cox model, the default occurs at the first passage time of the value process V to a **deterministic** default-triggering barrier.
- More precisely, the default time equals

$$\tau = \inf \{ t \in [0, T] : V_t < v(t) \}$$

for some function v.

Corporate Bond

A corporate bond is defined as the following defaultable claim

$$X = L, \ A = 0, \ Z = \beta_2 V, \ \widetilde{X} = \beta_1 V_T,$$

where β_1 , β_2 are constants in [0, 1].

If V is continuous, the default time τ is **predictable**: there exists a sequence of stopping times τ_n such that

$$au_n < au, \quad au_n \to au$$

The price of a defaultable bond with $Z = \tilde{X} = 0$ goes to 0, when t is closed to τ .

It is usually difficult to obtain the law of the first hitting time. Computations can be done for a geometric Brownian motion and a constant barrier. In case of discontinuous processes, the computation is even more difficult. Results are obtained for a double exponential compound process. In Kou's model, the barrier is constant and

$$V_t = \mu t + \sigma W_t + \sum_{i=1}^{N_t} Y_i \,,$$

where the density of the law of Y_1 is

$$\nu(dx) = \left(p\eta_1 e^{-\eta_1 x} \mathbb{1}_{\{x>0\}} + (1-p)\eta_2 e^{\eta_2 x} I_{\{x<0\}}\right) dx.$$

In this case, the default time τ is **totally inaccessible**: $\mathbb{P}(\tau = \vartheta) = 0$ for any predictable stopping time ϑ

Shortcomings of Structural Approach

- 1. Assumes the total value of firm assets can be easily observed.
- 2. Postulates that the total value of firm assets is a tradable security.
- 3. Generates low credit spreads for corporate bonds close to maturity.
- 4. Requires a judicious specification of the default barrier in order to get a good fit with the observed spread curves.
- 5. Defaults can be determined by factors other than assets and liabilities (for example, defaults could occur for reasons of illiquidity).

Further Developments

Incomplete /noisy information

Delay

Hazard process Approach

- 1. General case
- 2. (\mathcal{H}) -Hypothesis
- 3. Representation theorem
- 4. Intensity approach

General case

The model

Two kinds of information :

the information from the asset's prices, denoted as $(\mathcal{F}_t, t \ge 0)$

General case

The model

Two kinds of information :

the information from the asset's prices, denoted as $(\mathcal{F}_t, t \ge 0)$

the information from the default time τ modeled by the filtration $\mathbb{H} = (\mathcal{H}_t, t \ge 0)$ generated by the default process $H_t \stackrel{def}{=} \mathbb{1}_{\tau \le t}$.

General case

The model

Two kinds of information :

the information from the asset's prices, denoted as $(\mathcal{F}_t, t \ge 0)$

the information from the default time τ modeled by the filtration $(\mathcal{H}_t, t \ge 0)$ generated by the default process $H_t \stackrel{def}{=} \mathbb{1}_{\tau \le t}$.

We denote by $\mathcal{G}_t \stackrel{def}{=} \mathcal{F}_t \vee \mathcal{H}_t$.

The model

Two kinds of information :

the information from the asset's prices, denoted as $(\mathcal{F}_t, t \ge 0)$

the information from the default time τ modeled by the filtration $(\mathcal{H}_t, t \ge 0)$ generated by the default process $H_t \stackrel{def}{=} \mathbb{1}_{\tau \le t}$.

We denote by $\mathcal{G}_t \stackrel{def}{=} \mathcal{F}_t \vee \mathcal{H}_t$. If $G_t \in \mathcal{G}_t$, then $G_t \cap \{\tau > t\} = B_t \cap \{\tau > t\}$ for some event $B_t \in \mathcal{F}_t$.

Therefore any \mathcal{G}_t -measurable random variable Y_t satisfies $\mathbb{1}_{\{\tau > t\}}Y_t = \mathbb{1}_{\{\tau > t\}}y_t$, where y_t is an \mathcal{F}_t -measurable random variable.

Key lemma

We denote by $F_t \stackrel{def}{=} \mathbb{P}(\tau \leq t | \mathcal{F}_t)$ the conditional law of τ given the information \mathcal{F}_t , and $G_t = 1 - F_t$. Note that G is a **supermartingale**. We assume that G is continuous and $G_t > 0$.

Key lemma

We denote by $F_t \stackrel{def}{=} \mathbb{P}(\tau \leq t | \mathcal{F}_t)$ the conditional law of τ given the information \mathcal{F}_t , and $G_t = 1 - F_t$. Note that G is a **supermartingale**. We assume that G is continuous and $G_t > 0$.

Let X be an \mathcal{F}_T -measurable integrable r.v. Then,

$$\mathbb{E}(X\mathbb{1}_{T<\tau}|\mathcal{G}_t) = \mathbb{1}_{\{\tau>t\}} \frac{\mathbb{E}(X\mathbb{1}_{\{\tau>T\}}|\mathcal{F}_t)}{\mathbb{E}(\mathbb{1}_{\{\tau>t\}}|\mathcal{F}_t)} = \mathbb{1}_{\{\tau>t\}} e^{\Gamma_t} \mathbb{E}(Xe^{-\Gamma_T}|\mathcal{F}_t).$$

where $\Gamma_t \stackrel{def}{=} -\ln(1-F_t) = -\ln G_t$

Key lemma

We denote by $F_t \stackrel{def}{=} \mathbb{P}(\tau \leq t | \mathcal{F}_t)$ the conditional law of τ given the information \mathcal{F}_t , and $G_t = 1 - F_t$. Note that G is a **supermartingale**. We assume that G is continuous and $G_t > 0$.

Let X be an \mathcal{F}_T -measurable integrable r.v. Then,

$$\mathbb{E}(X\mathbb{1}_{T<\tau}|\mathcal{G}_t) = \mathbb{1}_{\{\tau>t\}} \frac{\mathbb{E}(X\mathbb{1}_{\{\tau>T\}}|\mathcal{F}_t)}{\mathbb{E}(\mathbb{1}_{\{\tau>t\}}|\mathcal{F}_t)} = \mathbb{1}_{\{\tau>t\}} e^{\Gamma_t} \mathbb{E}(Xe^{-\Gamma_T}|\mathcal{F}_t).$$

where $\Gamma_t \stackrel{def}{=} -\ln(1-F_t) = -\ln G_t$ Let h be an \mathbb{F} -predictable process. Then,

$$\mathbb{E}(h_{\tau}\mathbb{1}_{\tau < T}|\mathcal{G}_t) = h_{\tau}\mathbb{1}_{\{\tau \le t\}} + \mathbb{1}_{\{\tau > t\}}e^{\Gamma_t}\mathbb{E}\left(\int_t^T h_u dF_u|\mathcal{F}_t\right).$$

(i) The process $L_t \stackrel{def}{=} (1 - H_t)e^{\Gamma_t}$ is a G-martingale.

(i) The process $L_t \stackrel{def}{=} (1 - H_t)e^{\Gamma_t}$ is a \mathbb{G} -martingale.

(ii) The process $M_t \stackrel{def}{=} H_t - \Gamma_{t \wedge \tau}$ is a \mathbb{G} -martingale as soon as F (or Γ) is increasing.

(i) The process $L_t \stackrel{def}{=} (1 - H_t)e^{\Gamma_t}$ is a \mathbb{G} -martingale.

(ii) The process $M_t \stackrel{def}{=} H_t - \Gamma_{t \wedge \tau}$ is a G -martingale as soon as F (or Γ) is increasing.

The supermartingale G admits a **decomposition** as G = Z - A where Z is a **martingale** and A a **predictable increasing** process.

(i) The process $L_t \stackrel{def}{=} (1 - H_t)e^{\Gamma_t}$ is a \mathbb{G} -martingale.

(ii) The process $M_t \stackrel{def}{=} H_t - \Gamma_{t \wedge \tau}$ is a G -martingale as soon as F (or Γ) is increasing.

The supermartingale G admits a **decomposition** as G = Z - A where Z is a **martingale** and A a **predictable increasing** process.

(iii) The process

$$M_t \stackrel{def}{=} H_t - \int_0^{t \wedge \tau} \frac{dA_u}{G_u}$$

is a G-martingale.

Proofs: The process $L_t = (1 - H_t)e^{\Gamma_t}$ is a \mathbb{G} -martingale.

From the key lemma, for t > s

 $\mathbb{E}(L_t|\mathcal{G}_s) = \mathbb{E}(\mathbb{1}_{\{\tau > t\}}e^{\Gamma_t}|\mathcal{G}_s) = \mathbb{1}_{\{\tau > s\}}e^{\Gamma_s}\mathbb{E}(\mathbb{1}_{\{\tau > t\}}e^{\Gamma_t}|\mathcal{F}_s)$

Proofs: The process $L_t = (1 - H_t)e^{\Gamma_t}$ is a \mathbb{G} -martingale.

From the key lemma, for t > s

$$\mathbb{E}(L_t|\mathcal{G}_s) = \mathbb{E}(\mathbbm{1}_{\{\tau>t\}}e^{\Gamma_t}|\mathcal{G}_s) = \mathbbm{1}_{\{\tau>s\}}e^{\Gamma_s}\mathbb{E}(\mathbbm{1}_{\{\tau>t\}}e^{\Gamma_t}|\mathcal{F}_s)$$
$$= \mathbbm{1}_{\{\tau>s\}}e^{\Gamma_s}\mathbb{E}(\mathbb{E}(\mathbbm{1}_{\{\tau>t\}}|\mathcal{F}_t)e^{\Gamma_t}|\mathcal{F}_s) = \mathbbm{1}_{\{\tau>s\}}e^{\Gamma_s}\mathbb{E}(e^{-\Gamma_t}e^{\Gamma_t}|\mathcal{F}_s)$$

Proofs: The process $L_t = (1 - H_t)e^{\Gamma_t}$ is a \mathbb{G} -martingale.

From the key lemma, for t > s

$$\mathbb{E}(L_t|\mathcal{G}_s) = \mathbb{E}(\mathbb{1}_{\{\tau > t\}} e^{\Gamma_t} | \mathcal{G}_s) = \mathbb{1}_{\{\tau > s\}} e^{\Gamma_s} \mathbb{E}(\mathbb{1}_{\{\tau > t\}} e^{\Gamma_t} | \mathcal{F}_s)$$

$$= \mathbb{1}_{\{\tau > s\}} e^{\Gamma_s} \mathbb{E}(\mathbb{E}(\mathbb{1}_{\{\tau > t\}} | \mathcal{F}_t) e^{\Gamma_t} | \mathcal{F}_s) = \mathbb{1}_{\{\tau > s\}} e^{\Gamma_s} \mathbb{E}(e^{-\Gamma_t} e^{\Gamma_t} | \mathcal{F}_s)$$

$$= \mathbb{1}_{\{\tau > s\}} e^{\Gamma_s} = L_s$$

The process $M_t = H_t - \Gamma_{t \wedge \tau}$ is a \mathbb{G} -martingale as soon as F (or Γ) is increasing.

The process $M_t = H_t - \Gamma_{t \wedge \tau}$ is a \mathbb{G} -martingale as soon as F (or Γ) is increasing. From integration by parts formula :

$$dL_t = (1 - H_t)e^{\Gamma_t}d\Gamma_t - e^{\Gamma_t}dH_t$$

The process $M_t = H_t - \Gamma_{t \wedge \tau}$ is a \mathbb{G} -martingale as soon as F (or Γ) is increasing. From integration by parts formula :

$$dL_t = (1 - H_t)e^{\Gamma_t}d\Gamma_t - e^{\Gamma_t}dH_t$$

(note that $de^{\Gamma_t} = e^{\Gamma_t} d\Gamma_t$ is valid since Γ is increasing)

The process $M_t = H_t - \Gamma_{t \wedge \tau}$ is a \mathbb{G} -martingale as soon as F (or Γ) is increasing. From integration by parts formula :

$$dL_t = (1 - H_t)e^{\Gamma_t}d\Gamma_t - e^{\Gamma_t}dH_t$$

(note that $de^{\Gamma_t} = e^{\Gamma_t} d\Gamma_t$ is valid since Γ is increasing) and the process $M_t = H_t - \Gamma(t \wedge \tau)$ can be written

$$M_t \stackrel{def}{=} \int_{]0,t]} dH_u - \int_{]0,t]} (1 - H_u) d\Gamma_u = -\int_{]0,t]} e^{-\Gamma_u} dL_u$$

and is a \mathbb{G} -martingale since L is \mathbb{G} -martingale.

The process

$$M_t = H_t - \int_0^{t \wedge \tau} \frac{dA_u}{G_u}$$

is a G-martingale.

Let s < t. We give the proof in two steps, using the Doob-Meyer decomposition of F as $F_t = Z_t + A_t$.

$$\mathbb{E}(H_t|\mathcal{G}_s) = H_s + \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

$$\mathbb{E}(H_t|\mathcal{G}_s) = H_s + \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

$$\mathbb{E}(H_t|\mathcal{G}_s) = 1 - \mathbb{P}(t < \tau|\mathcal{G}_s) = 1 - \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(G_t|\mathcal{F}_s)$$

$$\mathbb{E}(H_t|\mathcal{G}_s) = H_s + \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

$$\mathbb{E}(H_t|\mathcal{G}_s) = 1 - \mathbb{P}(t < \tau|\mathcal{G}_s) = 1 - \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(G_t|\mathcal{F}_s)$$
$$= 1 - \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(1 - Z_t - A_t|\mathcal{F}_s)$$

$$\mathbb{E}(H_t|\mathcal{G}_s) = H_s + \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

$$\mathbb{E}(H_t|\mathcal{G}_s) = 1 - \mathbb{P}(t < \tau|\mathcal{G}_s) = 1 - \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(G_t|\mathcal{F}_s)$$
$$= 1 - \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(1 - Z_t - A_t|\mathcal{F}_s)$$
$$= 1 - \mathbb{1}_{s < \tau} \frac{1}{G_s} (1 - Z_s - A_s - \mathbb{E}(A_t - A_s|\mathcal{F}_s))$$

$$\mathbb{E}(H_t|\mathcal{G}_s) = H_s + \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

$$\begin{split} \mathbb{E}(H_t|\mathcal{G}_s) &= 1 - \mathbb{P}(t < \tau|\mathcal{G}_s) = 1 - \mathbbm{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(G_t|\mathcal{F}_s) \\ &= 1 - \mathbbm{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(1 - Z_t - A_t|\mathcal{F}_s) \\ &= 1 - \mathbbm{1}_{s < \tau} \frac{1}{G_s} (1 - Z_s - A_s - \mathbb{E}(A_t - A_s|\mathcal{F}_s)) \\ &= 1 - \mathbbm{1}_{s < \tau} \frac{1}{G_s} (G_s - \mathbb{E}(A_t - A_s|\mathcal{F}_s)) \end{split}$$
First step: we prove

$$\mathbb{E}(H_t|\mathcal{G}_s) = H_s + \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

Indeed,

$$\begin{split} \mathbb{E}(H_t | \mathcal{G}_s) &= 1 - \mathbb{P}(t < \tau | \mathcal{G}_s) = 1 - \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(G_t | \mathcal{F}_s) \\ &= 1 - \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(1 - Z_t - A_t | \mathcal{F}_s) \\ &= 1 - \mathbb{1}_{s < \tau} \frac{1}{G_s} (1 - Z_s - A_s - \mathbb{E}(A_t - A_s | \mathcal{F}_s)) \\ &= 1 - \mathbb{1}_{s < \tau} \frac{1}{G_s} (G_s - \mathbb{E}(A_t - A_s | \mathcal{F}_s)) \\ &= \mathbb{1}_{\tau \le s} + \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s | \mathcal{F}_s) \end{split}$$

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{t\wedge\tau} \mathbb{1}_{\tau\leq s} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}\left(\int_s^\infty \Lambda_{t\wedge u} dF_u|\mathcal{F}_s\right)$$

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} \mathbb{1}_{\tau\leq s} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}\left(\int_s^\infty \Lambda_{t\wedge u} dF_u|\mathcal{F}_s\right)$$
$$= \Lambda_{s\wedge\tau} \mathbb{1}_{\tau\leq s} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}\left(\int_s^t \Lambda_u dF_u + \int_t^\infty \Lambda_t dF_u|\mathcal{F}_s\right)$$

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} \mathbb{1}_{\tau\leq s} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}\left(\int_s^{\infty} \Lambda_{t\wedge u} dF_u|\mathcal{F}_s\right) \\
= \Lambda_{s\wedge\tau} \mathbb{1}_{\tau\leq s} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}\left(\int_s^t \Lambda_u dF_u + \int_t^{\infty} \Lambda_t dF_u|\mathcal{F}_s\right) \\
= \Lambda_{s\wedge\tau} \mathbb{1}_{\tau\leq s} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}\left(\int_s^t \Lambda_u dF_u + \Lambda_t G_t|\mathcal{F}_s\right)$$

We now use IP formula, using that Λ is bounded variation and continuous

$$d(\Lambda_t G_t) = -\Lambda_t dF_t + G_t d\Lambda_t = -\Lambda_t dF_t + dA_t$$

We now use IP formula, using that Λ is bounded variation and continuous

$$d(\Lambda_t G_t) = -\Lambda_t dF_t + G_t d\Lambda_t = -\Lambda_t dF_t + dA_t$$

hence

$$\int_{s}^{t} \Lambda_{u} dF_{u} + \Lambda_{t} G_{t} = -\Lambda_{t} G_{t} + \Lambda_{s} G_{s} + A_{t} - A_{s} + \Lambda_{t} G_{t}$$
$$= \Lambda_{s} G_{s} + A_{t} - A_{s}$$

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} \mathbb{1}_{\tau\leq s} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}\left(\int_s^t \Lambda_u dF_u + \Lambda_t G_t|\mathcal{F}_s\right)$$

and

$$\int_{s}^{t} \Lambda_{u} dF_{u} + \Lambda_{t} G_{t} = \Lambda_{s} G_{s} + A_{t} - A_{s}$$

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} \mathbb{1}_{\tau\leq s} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}\left(\int_s^t \Lambda_u dF_u + \Lambda_t G_t|\mathcal{F}_s\right)$$

and

$$\int_{s}^{t} \Lambda_{u} dF_{u} + \Lambda_{t} G_{t} = \Lambda_{s} G_{s} + A_{t} - A_{s}$$

it follows that

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} \mathbb{1}_{\tau\leq s} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}(\Lambda_s G_s + A_t - A_s|\mathcal{F}_s)$$

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} \mathbb{1}_{\tau\leq s} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}\left(\int_s^t \Lambda_u dF_u + \Lambda_t G_t|\mathcal{F}_s\right)$$

and

$$\int_{s}^{t} \Lambda_{u} dF_{u} + \Lambda_{t} G_{t} = \Lambda_{s} G_{s} + A_{t} - A_{s}$$

it follows that

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} \mathbb{1}_{\tau\leq s} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}(\Lambda_s G_s + A_t - A_s|\mathcal{F}_s)$$
$$= \Lambda_{s\wedge\tau} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s).$$

$$\mathbb{E}(H_t|\mathcal{G}_s) = H_s + \mathbb{1}_{s < \tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

and

$$\mathbb{E}(\Lambda_{t\wedge\tau}|\mathcal{G}_s) = \Lambda_{s\wedge\tau} + \mathbb{1}_{s<\tau} \frac{1}{G_s} \mathbb{E}(A_t - A_s|\mathcal{F}_s)$$

we deduce

$$\mathbb{E}(H_t - \Lambda_{t \wedge \tau} | \mathcal{G}_s) = H_s - \Lambda_{s \wedge \tau}$$

The continuity of A is equivalent to the fact that τ is totally inaccessible.

Moreover, if A is absolutely continuous w.r.t. the Lebesgue measure, there exists an \mathbb{F} -adapted process λ , called the \mathbb{F} -intensity such that the process

$$H_t - \int_0^{t \wedge \tau} \lambda_u du = H_t - \int_0^t (1 - H_u) \lambda_u du$$

is a G-martingale. The process λ satisfies

$$\lambda_t = \lim_{h \to 0} \frac{1}{h} \frac{\mathbb{P}(t < \tau < t + h | \mathcal{F}_t)}{\mathbb{P}(t < \tau | \mathcal{F}_t)}$$

The G-intensity of τ is the G adapted process $\lambda^{\mathbb{G}}$ such that the process $H_t - \int_0^t \lambda_u^{\mathbb{G}} du$ is a G-martingale. Obviously $\lambda_t^{\mathbb{G}} = \mathbb{1}_{t < \tau} \lambda_t$.

Computation in a restricted filtration

Let $\widetilde{\mathbb{F}} \subset \mathbb{F}$ and $\widetilde{\mathcal{G}}_t = \widetilde{\mathcal{F}}_t \vee \mathcal{H}_t$.

From

$$F_t = \mathbb{P}(\tau \le t | \mathcal{F}_t)$$

we deduce

$$\widetilde{F}_t = \mathbb{P}(\tau \le t | \widetilde{\mathcal{F}}_t) = \mathbb{E}(F_t | \widetilde{\mathcal{F}}_t)$$

The computation of the intensity is more difficult, the $\widetilde{\mathbb{F}}$ - intensity in the restricted filtration is not the conditional expectation of the \mathbb{F} -intensity

This methodology provides a bridge between structural approach and reduced one: starting with a structural model, where $\tau = \inf\{t : X_t \leq 0\}$ where the reference filtration is the one generated by X, restricting the information to $\widetilde{\mathbb{F}}$, and/or adding noise to the reference filtration leads to a reduced form model where the goal is to compute the conditional law of τ given the information, or at least the quantity $\mathbb{P}(\tau > t | \widetilde{\mathcal{F}}_t)$.

(\mathcal{H}) Hypothesis

We now examine the **immersion property** (or (\mathcal{H}) -hypothesis) which reads:

(\mathcal{H}) Every $\mathbb F$ square-integrable martingale is a $\mathbb G$ square integrable martingale.

This hypothesis implies that the \mathbb{F} -Brownian motion remains a Brownian motion in the enlarged filtration and that every \mathbb{F} -local martingale is a \mathbb{G} -local martingale . This is equivalent to : For any $t \in \mathbb{R}_+$, we have

 $\mathbb{P}(\tau \leq t \,|\, \mathcal{F}_t) = \mathbb{P}(\tau \leq t \,|\, \mathcal{F}_\infty).$

Complete model case

We assume constant interest rate. Let S be a semi-martingale on $(\Omega, \mathcal{G}, \mathbb{P})$ such that there exists a **unique** probability \mathbb{Q} , equivalent to \mathbb{P} on \mathcal{F}_T , where $\mathcal{F}_t = \mathcal{F}_t^S = \sigma(S_s, s \leq t)$ such that $(\tilde{S}_t = S_t e^{-rt}, 0 \leq t \leq T)$ is an \mathbb{F}^S -martingale under the probability \mathbb{Q} . We assume that there exists a probability $\tilde{\mathbb{Q}}$, equivalent to \mathbb{P} on \mathcal{G}_T such that $(\tilde{S}_t, 0 \leq t \leq T)$ is a \mathbb{G} -martingale under the probability $\tilde{\mathbb{Q}}$. Then, **any** (\mathbb{F}, \mathbb{Q}) -**martingale is a** $(\mathbb{G}, \tilde{\mathbb{Q}})$ -**martingale** and the restriction of $\tilde{\mathbb{Q}}$ to \mathcal{F}_T is equal to \mathbb{Q} .

Change of a probability measure

Kusuoka shows, by means of a counter-example, that the hypothesis (\mathcal{H}) is not invariant with respect to an equivalent change of the underlying probability measure, in general.

Representation theorem

Kusuoka establishes the following representation theorem, in the case where \mathbb{F} is a Brownian filtration. Under (\mathcal{H}) , any \mathbb{G} -square integrable martingale admits a representation as the sum of a stochastic integral with respect to the Brownian motion and a stochastic integral with respect to the discontinuous martingale M.

Suppose that hypothesis (\mathcal{H}) holds under \mathbb{P} and that any \mathbb{F} -martingale is continuous. Then, the martingale $M_t^h = \mathbb{E}_{\mathbb{P}}(h_\tau | \mathcal{G}_t)$, where h is an \mathbb{F} -predictable process such that $\mathbb{E}(h_\tau) < \infty$, admits the following decomposition

$$M_t^h = m_0^h + \int_0^{t \wedge \tau} e^{\Gamma_u} dm_u^h + \int_{]0, t \wedge \tau]} (h_u - J_u) \, dM_u,$$

where m^h is the continuous \mathbb{F} -martingale

$$m_t^h = \mathbb{E}_{\mathbb{P}} \left(\int_0^\infty h_u dF_u \, | \, \mathcal{F}_t \right),$$

 $J_t = e^{\Gamma_t} (m_t^h - \int_0^t h_u dF_u)$ is the predefault value of h_{τ} and M is the discontinuous G-martingale $M_t = H_t - \Gamma_{t \wedge \tau}$.

$$M_t^h = \mathbb{E}(h_\tau | \mathcal{G}_t)$$

= $\mathbb{1}_{\{\tau \le t\}} h_\tau + \mathbb{1}_{\{\tau > t\}} e^{\Gamma_t} \mathbb{E}\left(\int_t^\infty h_u dF_u \, \Big| \, \mathcal{F}_t\right)$

Suppose that hypothesis (\mathcal{H}) holds under \mathbb{P} and that any \mathbb{F} -martingale is continuous. Then, the martingale $M_t^h = \mathbb{E}_{\mathbb{P}}(h_\tau | \mathcal{G}_t)$, where h is an \mathbb{F} -predictable process such that $\mathbb{E}(h_\tau) < \infty$, admits the following decomposition

$$M_t^h = m_0^h + \int_0^{t \wedge \tau} e^{\Gamma_u} dm_u^h + \int_{]0, t \wedge \tau]} (h_u - J_u) \, dM_u,$$

where m^h is the continuous \mathbb{F} -martingale

$$m_t^h = \mathbb{E}_{\mathbb{P}} \left(\int_0^\infty h_u dF_u \, | \, \mathcal{F}_t \right),$$

 $J_t = e^{\Gamma_t} (m_t^h - \int_0^t h_u dF_u)$ is the predefault value of h_{τ} and M is the discontinuous G-martingale $M_t = H_t - \Gamma_{t \wedge \tau}$.

$$M_t^h = \mathbb{E}(h_\tau | \mathcal{G}_t)$$

= $\mathbb{1}_{\{\tau \le t\}} h_\tau + \mathbb{1}_{\{\tau > t\}} e^{\Gamma_t} \mathbb{E}\left(\int_t^\infty h_u dF_u \left| \mathcal{F}_t\right)\right)$

If \mathbb{F} is a Brownian filtration, $dm_u^h = \sigma_u^h dW_u$

$$M_{t}^{h} = \mathbb{E}(h_{\tau} | \mathcal{G}_{t})$$

$$= \mathbb{1}_{\{\tau \leq t\}} h_{\tau} + \mathbb{1}_{\{\tau > t\}} e^{\Gamma_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} dF_{u} \middle| \mathcal{F}_{t}\right)$$

$$= \mathbb{1}_{\{\tau \leq t\}} h_{\tau} + \mathbb{1}_{\{\tau > t\}} e^{\Gamma_{t}} \left(m_{t}^{h} - \int_{0}^{t} h_{u} dF_{u}\right)$$

$$= \int_{0}^{t} h_{u} dH_{u} + \mathbb{1}_{\{\tau > t\}} J_{t}.$$

$$M_{t}^{h} = \mathbb{E}(h_{\tau} | \mathcal{G}_{t})$$

$$= \mathbb{1}_{\{\tau \leq t\}} h_{\tau} + \mathbb{1}_{\{\tau > t\}} e^{\Gamma_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} dF_{u} \middle| \mathcal{F}_{t}\right)$$

$$= \mathbb{1}_{\{\tau \leq t\}} h_{\tau} + \mathbb{1}_{\{\tau > t\}} e^{\Gamma_{t}} \left(m_{t}^{h} - \int_{0}^{t} h_{u} dF_{u}\right)$$

$$= \int_{0}^{t} h_{u} dH_{u} + \mathbb{1}_{\{\tau > t\}} J_{t}.$$

From the facts that Γ is an increasing process m^h a continuous martingale and using the integration by parts formula, we deduce that

$$dJ_t = e^{\Gamma_t} dm_t^h + (J_t - h_t) \frac{dF_t}{G_t}$$

This theorem generalizes : if W is a \mathbb{F} -Brownian motion which decomposes as

$$W_t = B_t + \int_0^t \mu_s ds$$

where B is a G-martingale (and a G Brownian motion), then, any G martingale admits a decomposition as

$$Y_t = y + \int_0^t \widehat{y}_s dB_s + \int_0^t \widetilde{y}_s dM_s$$

In the so-called intensity approach, the default time τ is a G-stopping time. The intensity is defined as any non-negative process λ , such that

$$M_t \stackrel{def}{=} H_t - \int_0^{t \wedge \tau} \lambda_s ds$$

is a G-martingale.

In the so-called intensity approach, the default time τ is a G-stopping time. The intensity is defined as any non-negative process λ , such that

$$M_t \stackrel{def}{=} H_t - \int_0^{t \wedge \tau} \lambda_s ds$$

is a G-martingale.

The existence of the intensity relies on the fact that H is a sub-martingale and can be written as M + A where M is a martingale M and A a predictable increasing process.

In the so-called intensity approach, the default time τ is a G-stopping time. The intensity is defined as any non-negative process λ , such that

$$M_t \stackrel{def}{=} H_t - \int_0^{t \wedge \tau} \lambda_s ds$$

is a G-martingale.

The existence of the intensity relies on the fact that H is a sub-martingale and can be written as M + A where M is a martingale M and A a predictable increasing process. The increasing process A is such that $A_t \mathbb{1}_{t \ge \tau} = A_{\tau} \mathbb{1}_{t \ge \tau}$. The intensity exists only if τ is a totally inaccessible stopping time.

In the so-called intensity approach, the default time τ is a G-stopping time. The intensity is defined as any non-negative process λ , such that

$$M_t \stackrel{def}{=} H_t - \int_0^{t \wedge \tau} \lambda_s ds$$

is a G-martingale.

The existence of the intensity relies on the fact that H is a sub-martingale and can be written as M + A where M is a martingale M and A a predictable increasing process. The increasing process A is such that $A_t \mathbb{1}_{t \ge \tau} = A_{\tau} \mathbb{1}_{t \ge \tau}$. The intensity exists only if τ is a totally inaccessible stopping time. We emphasize that, in that setting the intensity is not well defined after time τ , i.e., if λ is an intensity, for any non-negative predictable process g the process $\tilde{\lambda}_t = \lambda_t \mathbb{1}_{t \le \tau} + g_t \mathbb{1}_{\{t > \tau\}}$ is also an intensity. If the process $Y_t = \mathbb{E}\left(X \exp\left(-\int_0^T \lambda_u du\right) |\mathcal{G}_t\right)$ is continuous at time τ , then, setting $L_t = \mathbbm{1}_{\{t < \tau\}} e^{\Gamma_t}$ $\mathbb{E}(X \mathbbm{1}_{\{T < \tau\}} |\mathcal{G}_t) = \mathbbm{1}_{\{t < \tau\}} \mathbb{E}\left(X \exp\left(-\int_t^T \lambda_u du\right) |\mathcal{G}_t\right) = L_t Y_t$

If Y is not continuous

$$\mathbb{E}(X\mathbb{1}_{\{T < \tau\}} | \mathcal{G}_t) = L_t Y_t - \mathbb{E}(\Delta Y_\tau \mathbb{1}_{\tau < T} | \mathcal{G}_t).$$

It can be mentioned that the continuity of the process depends on the choice of λ after time τ .

Proof: Setting

$$U_t = L_t Y_t = \mathbb{1}_{t < \tau} \exp\left(\int_0^t \lambda_s ds\right) \mathbb{E}\left(X \exp\left(-\int_0^T \lambda_u du\right) |\mathcal{G}_t\right)$$

we have $U_T = X \mathbb{1}_{\{T < \tau\}}$ and
 $dU_t = L_{t-} dY_t + Y_{t-} dL_t + d[L, Y]_t = L_{t-} dY_t + Y_{t-} dL_t + \Delta L_t \Delta Y_t$

and

$$\mathbb{E}(U_T|\mathcal{G}_t) = \mathbb{E}(X\mathbb{1}_{\{T < \tau\}}|\mathcal{G}_t) = U_t - \mathbb{E}(e^{\Lambda_\tau} \Delta Y_\tau \mathbb{1}_{\tau < T}|\mathcal{G}_t).$$

Then, for any $X \in \mathcal{G}_T$:

 $\mathbb{E}(X\mathbb{1}_{T<\tau}|\mathcal{G}_t) = \mathbb{1}_{\tau>t} \left(e^{\Lambda_t} \mathbb{E}(e^{-\Lambda_T}X|\mathcal{G}_t) - \mathbb{E}(e^{\Lambda_\tau} \Delta Y_\tau \mathbb{1}_{\tau<T}|\mathcal{G}_t) \right)$ where $Y_t = \mathbb{E}\left(X \exp\left(-\Lambda_T\right) |\mathcal{G}_t \right)$ and $\Lambda_t = \int_0^t \lambda_u du$

Cox Processes and Extensions

- 1. Construction of Default Time with a given Intensity
- 2. Properties

2.1 Conditional expectation2.2. Key Lemma

3. Defaultable Assets

Default Time with a given Intensity

Let $(\Omega, \mathcal{G}, \mathbb{P})$ be a probability space endowed with a filtration \mathbb{F} . A nonnegative \mathbb{F} -adapted process λ is given.

Default Time with a given Intensity

Let $(\Omega, \mathcal{G}, \mathbb{P})$ be a probability space endowed with a filtration \mathbb{F} . A nonnegative \mathbb{F} -adapted process λ is given.

We assume that there exists a random variable Θ , independent of \mathcal{F}_{∞} , with an exponential law: $\mathbb{P}(\Theta \ge t) = e^{-t}$.
Default Time with a given Intensity

Let $(\Omega, \mathcal{G}, \mathbb{P})$ be a probability space endowed with a filtration \mathbb{F} .

A nonnegative \mathbb{F} -adapted process λ is given.

We assume that there exists a random variable Θ , independent of \mathcal{F}_{∞} , with an exponential law: $\mathbb{P}(\Theta \ge t) = e^{-t}$.

We define the random time τ as the first time when the process $\Lambda_t = \int_0^t \lambda_s \, ds$ is above the random level Θ , i.e.,

 $\tau = \inf \{ t \ge 0 : \Lambda_t \ge \Theta \}.$

Default Time with a given Intensity

Let $(\Omega, \mathcal{G}, \mathbb{P})$ be a probability space endowed with a filtration \mathbb{F} .

A nonnegative \mathbb{F} -adapted process λ is given.

We assume that there exists a random variable Θ , independent of \mathcal{F}_{∞} , with an exponential law: $\mathbb{P}(\Theta \ge t) = e^{-t}$.

We define the random time τ as the first time when the process $\Lambda_t = \int_0^t \lambda_s \, ds$ is above the random level Θ , i.e.,

 $\tau = \inf \{ t \ge 0 : \Lambda_t \ge \Theta \}.$

In particular, $\{\tau > s\} = \{\Lambda_s < \Theta\}.$

Properties

Conditional Expectations

The conditional distribution function of τ given the σ -field \mathcal{F}_t is for $t \geq s$

 $\mathbb{P}(\tau > s | \mathcal{F}_t) = \exp\left(-\Lambda_s\right).$

Properties

Conditional Expectations

The conditional distribution function of τ given the σ -field \mathcal{F}_t is for $t \geq s$

 $\mathbb{P}(\tau > s | \mathcal{F}_t) = \exp\left(-\Lambda_s\right).$

Proof : For $s \leq t$,

$$\mathbb{P}(\tau > s | \mathcal{F}_t) = \mathbb{P}(\Lambda_s < \Theta | \mathcal{F}_t)$$
$$= \Psi(\Lambda_s)$$

where $\Psi(x) = \mathbb{P}(x < \Theta)$.

Key lemma

Let Y be an integrable r.v. Then,

$$\mathbb{1}_{\{\tau > t\}} \mathbb{E}(Y|\mathcal{G}_t) = \mathbb{1}_{\{\tau > t\}} \frac{\mathbb{E}(Y\mathbb{1}_{\{\tau > t\}}|\mathcal{F}_t)}{\mathbb{E}(\mathbb{1}_{\{\tau > t\}}|\mathcal{F}_t)} = \mathbb{1}_{\{\tau > t\}} e^{\Lambda_t} \mathbb{E}(Y\mathbb{1}_{\{\tau > t\}}|\mathcal{F}_t).$$

Key lemma

Let Y be an integrable r.v. Then,

$$1\!\!1_{\{\tau>t\}}\mathbb{E}(Y|\mathcal{G}_t) = 1\!\!1_{\{\tau>t\}} \frac{\mathbb{E}(Y1\!\!1_{\{\tau>t\}}|\mathcal{F}_t)}{\mathbb{E}(1\!\!1_{\{\tau>t\}}|\mathcal{F}_t)} = 1\!\!1_{\{\tau>t\}} e^{\Lambda_t} \mathbb{E}(Y1\!\!1_{\{\tau>t\}}|\mathcal{F}_t).$$

If $X \in \mathcal{F}_T$

$$\mathbb{E}(X\mathbb{1}_{\{\tau>T\}}|\mathcal{G}_t) = \mathbb{1}_{\{\tau>t\}} e^{\Lambda_t} \mathbb{E}(Xe^{-\Lambda_T}|\mathcal{F}_t).$$

Key lemma

Let Y be an integrable r.v. Then,

$$1\!\!1_{\{\tau>t\}}\mathbb{E}(Y|\mathcal{G}_t) = 1\!\!1_{\{\tau>t\}} \frac{\mathbb{E}(Y1\!\!1_{\{\tau>t\}}|\mathcal{F}_t)}{\mathbb{E}(1\!\!1_{\{\tau>t\}}|\mathcal{F}_t)} = 1\!\!1_{\{\tau>t\}} e^{\Lambda_t} \mathbb{E}(Y1\!\!1_{\{\tau>t\}}|\mathcal{F}_t).$$

If $X \in \mathcal{F}_T$

$$\mathbb{E}(X\mathbb{1}_{\{\tau>T\}}|\mathcal{G}_t) = \mathbb{1}_{\{\tau>t\}} e^{\Lambda_t} \mathbb{E}(Xe^{-\Lambda_T}|\mathcal{F}_t).$$

The process λ is called **the intensity** of τ .

In particular, one an check that

- (i) The process $L_t = \mathbb{1}_{t < \tau} e^{\Lambda_t} = (1 H_t) e^{\Lambda_t}$ is a martingale
- (ii) Let X be an \mathcal{F}_{∞} -measurable r.v.. Then

 $\mathbb{E}(X|\mathcal{G}_t) = \mathbb{E}(X|\mathcal{F}_t).$

Stochastic Barrier

Suppose that

$$P(\tau \le t | \mathcal{F}_{\infty}) = 1 - e^{-\Gamma_t}$$

where Γ is an arbitrary continuous strictly increasing \mathbb{F} -adapted process. Then, (\mathcal{H}) holds. Moreover, there exists a random variable Θ , independent of \mathcal{F}_{∞} , with exponential law of parameter 1, such that $\tau \stackrel{law}{=} \inf \{t \ge 0 : \Gamma_t > \Theta\}$. In fact $\Theta \stackrel{def}{=} \Gamma_{\tau}$.

PROOF: Suppose that

$$P(\tau \le t | \mathcal{F}_{\infty}) = 1 - e^{-\Gamma_t}$$

where Γ is an arbitrary continuous strictly increasing \mathbb{F} -adapted process.

PROOF: Suppose that

$$P(\tau \le t | \mathcal{F}_{\infty}) = 1 - e^{-\Gamma_t}$$

where Γ is an arbitrary continuous strictly increasing \mathbb{F} -adapted process. Let us set $\Theta \stackrel{def}{=} \Gamma_{\tau}$. Then

$$\{t < \Theta\} = \{t < \Gamma_{\tau}\} = \{C_t < \tau\},\$$

where C is the right inverse of Γ , so that $\Gamma_{C_t} = t$.

PROOF: Suppose that

$$P(\tau \le t | \mathcal{F}_{\infty}) = 1 - e^{-\Gamma_t}$$

where Γ is an arbitrary continuous strictly increasing \mathbb{F} -adapted process. Let us set $\Theta \stackrel{def}{=} \Gamma_{\tau}$. Then

$$\{t < \Theta\} = \{t < \Gamma_{\tau}\} = \{C_t < \tau\},\$$

where C is the right inverse of Γ , so that $\Gamma_{C_t} = t$. Therefore

$$P(\Theta > u | \mathcal{F}_{\infty}) = e^{-\Gamma_{C_u}} = e^{-u}.$$

We have thus established the required properties, namely, the probability law of Θ and its independence of the σ -field \mathcal{F}_{∞} . Furthermore, $\tau = \inf\{t : \Gamma_t > \Gamma_{\tau}\} = \inf\{t : \Gamma_t > \Theta\}.$ We now compute the expectation of the value at time τ of a predictable process. (i) If h is an \mathbb{F} -predictable (bounded) process then

$$\mathbb{E}(h_{\tau}|\mathcal{G}_{t}) = e^{\Lambda_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} dF_{u} \left| \mathcal{F}_{t}\right\rangle \mathbb{1}_{\{\tau > t\}} + h_{\tau} \mathbb{1}_{\{\tau \le t\}}\right)$$

We now compute the expectation of the value at time τ of a predictable process. (i) If h is an F-predictable (bounded) process then

$$\mathbb{E}(h_{\tau}|\mathcal{G}_{t}) = e^{\Lambda_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} dF_{u} \left| \mathcal{F}_{t}\right) \mathbb{1}_{\{\tau > t\}} + h_{\tau} \mathbb{1}_{\{\tau \le t\}}\right)$$
$$= e^{\Lambda_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} \lambda_{u} e^{-\Lambda_{u}} du \left| \mathcal{F}_{t}\right) \mathbb{1}_{\{\tau > t\}} + h_{\tau} \mathbb{1}_{\{\tau \le t\}}\right).$$

We now compute the expectation of the value at time τ of a predictable process. (i) If h is an F-predictable (bounded) process then

$$\mathbb{E}(h_{\tau}|\mathcal{G}_{t}) = e^{\Lambda_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} dF_{u} \left| \mathcal{F}_{t}\right) \mathbb{1}_{\{\tau > t\}} + h_{\tau} \mathbb{1}_{\{\tau \leq t\}}\right)$$
$$= e^{\Lambda_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} \lambda_{u} e^{-\Lambda_{u}} du \left| \mathcal{F}_{t}\right) \mathbb{1}_{\{\tau > t\}} + h_{\tau} \mathbb{1}_{\{\tau \leq t\}}.$$

In particular

$$\mathbb{E}(h_{\tau}) = \mathbb{E}\left(\int_{0}^{\infty} h_{u}\lambda_{u} \exp\left(-\Lambda_{u}\right) du\right)$$

We now compute the expectation of the value at time τ of a predictable process. (i) If h is an F-predictable (bounded) process then

$$\mathbb{E}(h_{\tau}|\mathcal{G}_{t}) = e^{\Lambda_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} dF_{u} \left| \mathcal{F}_{t}\right) \mathbb{1}_{\{\tau > t\}} + h_{\tau} \mathbb{1}_{\{\tau \le t\}}\right)$$
$$= e^{\Lambda_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} \lambda_{u} e^{-\Lambda_{u}} du \left| \mathcal{F}_{t}\right) \mathbb{1}_{\{\tau > t\}} + h_{\tau} \mathbb{1}_{\{\tau \le t\}}\right).$$

In particular

$$\mathbb{E}(h_{\tau}) = \mathbb{E}\left(\int_{0}^{\infty} h_{u}\lambda_{u} \exp\left(-\Lambda_{u}\right) du\right)$$

(ii) The process $(M_t := H_t - \int_0^{t \wedge \tau} \lambda_s ds, t \ge 0)$ is a \mathbb{G} -martingale.

We now compute the expectation of the value at time τ of a predictable process. (i) If h is an \mathbb{F} -predictable (bounded) process then

$$\mathbb{E}(h_{\tau}|\mathcal{G}_{t}) = e^{\Lambda_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} dF_{u} \left| \mathcal{F}_{t}\right) \mathbb{1}_{\{\tau > t\}} + h_{\tau} \mathbb{1}_{\{\tau \leq t\}}\right)$$
$$= e^{\Lambda_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} \lambda_{u} e^{-\Lambda_{u}}\right) du \left| \mathcal{F}_{t}\right) \mathbb{1}_{\{\tau > t\}} + h_{\tau} \mathbb{1}_{\{\tau \leq t\}}.$$

In particular

$$\mathbb{E}(h_{\tau}) = \mathbb{E}\left(\int_{0}^{\infty} h_{u}\lambda_{u} \exp\left(-\Lambda_{u}\right)du\right)$$

(ii) The process $(M_t := H_t - \int_0^{t \wedge \tau} \lambda_s ds, t \ge 0)$ is a \mathbb{G} -martingale. (iii) The martingale $L_t = \mathbb{1}_{t < \tau} e^{\Lambda_t}$ satisfies $dL_t = -L_{t-} dM_t$.