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3. Credit derivatives
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Models for single default

Defaultable Claims

Let us first describe a generic defaultable claim:

1. Default of an entity occurs at time τ . Default may be bankruptcy or other
financial distress.

2. At maturity T the promised payoff X is paid only if the default did not
occurred.

3. The promised dividends A are paid up to default time.

4. The recovery claim X̃ is received at time T, if default occurs prior to or at
the claim’s maturity date T .

5. The recovery process Z specifies the recovery payoff at time of default, if
default occurs prior to or at the maturity date T.
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Models for single default

Structural Approach
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Models for single default

• A risky asset V , which may represent the value of the firm, is traded. The
riskless asset (the savings account B) satisfies

dBt = rt Bt dt.

• The value of the firm V satisfies a Stochastic Differential Equation
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Models for single default

• In the Black and Cox model, the default occurs at the first passage time of the
value process V to a deterministic default-triggering barrier.

• More precisely, the default time equals

τ = inf { t ∈ [0, T ] : Vt < v(t)}

for some function v.
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Models for single default

Corporate Bond

A corporate bond is defined as the following defaultable claim

X = L, A = 0, Z = β2V, X̃ = β1VT ,

where β1, β2 are constants in [0, 1].

If V is continuous, the default time τ is predictable: there exists a sequence of
stopping times τn such that

τn < τ, τn → τ

The price of a defaultable bond with Z = X̃ = 0 goes to 0, when t is closed to τ .

It is usually difficult to obtain the law of the first hitting time. Computations can
be done for a geometric Brownian motion and a constant barrier.
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Models for single default

In case of discontinuous processes, the computation is even more difficult. Results
are obtained for a double exponential compound process. In Kou’s model, the
barrier is constant and

Vt = µt + σWt +
Nt∑

i=1

Yi ,

where the density of the law of Y1 is

ν(dx) =
(
pη1e

−η1x11{x>0} + (1− p)η2e
η2xI{x<0}

)
dx .

In this case, the default time τ is totally inaccessible: P(τ = ϑ) = 0 for any
predictable stopping time ϑ
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Models for single default

Shortcomings of Structural Approach

1. Assumes the total value of firm assets can be easily observed.

2. Postulates that the total value of firm assets is a tradable security.

3. Generates low credit spreads for corporate bonds close to maturity.

4. Requires a judicious specification of the default barrier in order to get a good
fit with the observed spread curves.

5. Defaults can be determined by factors other than assets and liabilities (for
example, defaults could occur for reasons of illiquidity).
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Models for single default

Further Developments

Incomplete /noisy information

Delay
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Hazard process Approach

Hazard process Approach

1. General case

2. (H)-Hypothesis

3. Representation theorem

4. Intensity approach
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General case

General case

The model

Two kinds of information :

the information from the asset’s prices, denoted as (Ft, t ≥ 0)
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General case

General case

The model

Two kinds of information :

the information from the asset’s prices, denoted as (Ft, t ≥ 0)

the information from the default time τ modeled by the filtration H = (Ht, t ≥ 0)

generated by the default process Ht
def
= 11τ≤t.
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General case

General case

The model

Two kinds of information :

the information from the asset’s prices, denoted as (Ft, t ≥ 0)

the information from the default time τ modeled by the filtration (Ht, t ≥ 0)

generated by the default process Ht
def
= 11τ≤t.

We denote by Gt
def
= Ft ∨Ht.
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General case

The model

Two kinds of information :

the information from the asset’s prices, denoted as (Ft, t ≥ 0)

the information from the default time τ modeled by the filtration (Ht, t ≥ 0)

generated by the default process Ht
def
= 11τ≤t.

We denote by Gt
def
= Ft ∨Ht. If Gt ∈ Gt, then Gt ∩ {τ > t} = Bt ∩ {τ > t} for some

event Bt ∈ Ft.

Therefore any Gt-measurable random variable Yt satisfies
11{τ>t}Yt = 11{τ>t}yt, where yt is an Ft-measurable random variable.

16



General case

Key lemma

We denote by Ft
def
= P(τ ≤ t|Ft) the conditional law of τ given the information Ft,

and Gt = 1− Ft. Note that G is a supermartingale. We assume that G is
continuous and Gt > 0.
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General case

Key lemma

We denote by Ft
def
= P(τ ≤ t|Ft) the conditional law of τ given the information Ft,

and Gt = 1− Ft. Note that G is a supermartingale. We assume that G is
continuous and Gt > 0.

Let X be an FT -measurable integrable r.v. Then,

E(X11T<τ |Gt) = 11{τ>t}
E(X11{τ>T}|Ft)
E(11{τ>t}|Ft)

= 11{τ>t}eΓtE(Xe−ΓT |Ft).

where Γt
def
= − ln(1− Ft) = − ln Gt
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General case

Key lemma

We denote by Ft
def
= P(τ ≤ t|Ft) the conditional law of τ given the information Ft,

and Gt = 1− Ft. Note that G is a supermartingale.
We assume that G is continuous and Gt > 0.

Let X be an FT -measurable integrable r.v. Then,

E(X11T<τ |Gt) = 11{τ>t}
E(X11{τ>T}|Ft)
E(11{τ>t}|Ft)

= 11{τ>t}eΓtE(Xe−ΓT |Ft).

where Γt
def
= − ln(1− Ft) = − ln Gt

Let h be an F-predictable process. Then,

E(hτ11τ<T |Gt) = hτ11{τ≤t} + 11{τ>t}eΓtE

(∫ T

t

hudFu|Ft

)
.
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General case

Martingales

(i) The process Lt
def
= (1−Ht)eΓt is a G-martingale.
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General case

Martingales

(i) The process Lt
def
= (1−Ht)eΓt is a G-martingale.

(ii) The process Mt
def
= Ht − Γt∧τ is a G -martingale as soon as F (or Γ) is

increasing.
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General case

Martingales

(i) The process Lt
def
= (1−Ht)eΓt is a G-martingale.

(ii) The process Mt
def
= Ht − Γt∧τ is a G -martingale as soon as F (or Γ) is

increasing.

The supermartingale G admits a decomposition as G = Z −A where Z is a
martingale and A a predictable increasing process.
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General case

Martingales

(i) The process Lt
def
= (1−Ht)eΓt is a G-martingale.

(ii) The process Mt
def
= Ht − Γt∧τ is a G -martingale as soon as F (or Γ) is

increasing.

The supermartingale G admits a decomposition as G = Z −A where Z is a
martingale and A a predictable increasing process.

(iii) The process

Mt
def
= Ht −

∫ t∧τ

0

dAu

Gu

is a G-martingale.
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General case

Proofs: The process Lt = (1−Ht)eΓt is a G-martingale.

From the key lemma, for t > s

E(Lt|Gs) = E(11{τ>t}eΓt |Gs) = 11{τ>s}eΓsE(11{τ>t}eΓt |Fs)
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General case

Proofs: The process Lt = (1−Ht)eΓt is a G-martingale.

From the key lemma, for t > s

E(Lt|Gs) = E(11{τ>t}eΓt |Gs) = 11{τ>s}eΓsE(11{τ>t}eΓt |Fs)

= 11{τ>s}eΓsE(E(11{τ>t}|Ft)eΓt |Fs) = 11{τ>s}eΓsE(e−ΓteΓt |Fs)
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General case

Proofs: The process Lt = (1−Ht)eΓt is a G-martingale.

From the key lemma, for t > s

E(Lt|Gs) = E(11{τ>t}eΓt |Gs) = 11{τ>s}eΓsE(11{τ>t}eΓt |Fs)

= 11{τ>s}eΓsE(E(11{τ>t}|Ft)eΓt |Fs) = 11{τ>s}eΓsE(e−ΓteΓt |Fs)

= 11{τ>s}eΓs = Ls
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General case

The process Mt = Ht − Γt∧τ is a G -martingale as soon as F (or Γ) is increasing.
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General case

The process Mt = Ht − Γt∧τ is a G -martingale as soon as F (or Γ) is increasing.

From integration by parts formula :

dLt = (1−Ht)eΓtdΓt − eΓtdHt
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General case

The process Mt = Ht − Γt∧τ is a G -martingale as soon as F (or Γ) is increasing.

From integration by parts formula :

dLt = (1−Ht)eΓtdΓt − eΓtdHt

(note that deΓt = eΓtdΓt is valid since Γ is increasing)
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General case

The process Mt = Ht − Γt∧τ is a G -martingale as soon as F (or Γ) is increasing.

From integration by parts formula :

dLt = (1−Ht)eΓtdΓt − eΓtdHt

(note that deΓt = eΓtdΓt is valid since Γ is increasing) and the process
Mt = Ht − Γ(t ∧ τ) can be written

Mt
def
=

∫

]0,t]

dHu −
∫

]0,t]

(1−Hu)dΓu = −
∫

]0,t]

e−ΓudLu

and is a G-martingale since L is G-martingale.
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General case

The process

Mt = Ht −
∫ t∧τ

0

dAu

Gu

is a G-martingale.

Let s < t. We give the proof in two steps, using the Doob-Meyer decomposition of
F as Ft = Zt + At.
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General case

First step: we prove

E(Ht|Gs) = Hs + 11s<τ
1

Gs
E(At −As|Fs)
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General case

First step: we prove

E(Ht|Gs) = Hs + 11s<τ
1

Gs
E(At −As|Fs)

Indeed,

E(Ht|Gs) = 1− P(t < τ |Gs) = 1− 11s<τ
1

Gs
E(Gt|Fs)
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General case

First step: we prove

E(Ht|Gs) = Hs + 11s<τ
1

Gs
E(At −As|Fs)

Indeed,

E(Ht|Gs) = 1− P(t < τ |Gs) = 1− 11s<τ
1

Gs
E(Gt|Fs)

= 1− 11s<τ
1

Gs
E(1− Zt −At|Fs)
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General case

First step: we prove

E(Ht|Gs) = Hs + 11s<τ
1

Gs
E(At −As|Fs)

Indeed,

E(Ht|Gs) = 1− P(t < τ |Gs) = 1− 11s<τ
1

Gs
E(Gt|Fs)

= 1− 11s<τ
1

Gs
E(1− Zt −At|Fs)

= 1− 11s<τ
1

Gs
(1− Zs −As − E(At −As|Fs))
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General case

First step: we prove

E(Ht|Gs) = Hs + 11s<τ
1

Gs
E(At −As|Fs)

Indeed,

E(Ht|Gs) = 1− P(t < τ |Gs) = 1− 11s<τ
1

Gs
E(Gt|Fs)

= 1− 11s<τ
1

Gs
E(1− Zt −At|Fs)

= 1− 11s<τ
1

Gs
(1− Zs −As − E(At −As|Fs))

= 1− 11s<τ
1

Gs
(Gs − E(At −As|Fs))
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General case

First step: we prove

E(Ht|Gs) = Hs + 11s<τ
1

Gs
E(At −As|Fs)

Indeed,

E(Ht|Gs) = 1− P(t < τ |Gs) = 1− 11s<τ
1

Gs
E(Gt|Fs)

= 1− 11s<τ
1

Gs
E(1− Zt −At|Fs)

= 1− 11s<τ
1

Gs
(1− Zs −As − E(At −As|Fs))

= 1− 11s<τ
1

Gs
(Gs − E(At −As|Fs))

= 11τ≤s + 11s<τ
1

Gs
E(At −As|Fs)
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General case

In a second step, we prove that, setting Λu =
∫ u

0
dAs

Gs
,

E(Λt∧τ |Gs) = Λs∧τ + 11s<τ
1

Gs
E(At −As|Fs)

Let t fixed. From the key formula, for hu = Λt∧u:
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General case

In a second step, we prove that, setting Λu =
∫ u

0
dAs

Gs
,

E(Λt∧τ |Gs) = Λs∧τ + 11s<τ
1

Gs
E(At −As|Fs)

Let t fixed. From the key formula, for hu = Λt∧u:

E(Λt∧τ |Gs) = Λt∧τ11τ≤s + 11s<τ
1

Gs
E

(∫ ∞

s

Λt∧udFu|Fs

)

39



General case

In a second step, we prove that, setting Λu =
∫ u

0
dAs

Gs
,

E(Λt∧τ |Gs) = Λs∧τ + 11s<τ
1

Gs
E(At −As|Fs)

Let t fixed. From the key formula, for hu = Λt∧u:

E(Λt∧τ |Gs) = Λs∧τ11τ≤s + 11s<τ
1

Gs
E

(∫ ∞

s

Λt∧udFu|Fs

)

= Λs∧τ11τ≤s + 11s<τ
1

Gs
E

(∫ t

s

ΛudFu +
∫ ∞

t

ΛtdFu|Fs

)
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General case

In a second step, we prove that, setting Λu =
∫ u

0
dAs

Gs
,

E(Λt∧τ |Gs) = Λs∧τ + 11s<τ
1

Gs
E(At −As|Fs)

Let t fixed. From the key formula, for hu = Λt∧u:

E(Λt∧τ |Gs) = Λs∧τ11τ≤s + 11s<τ
1

Gs
E

(∫ ∞

s

Λt∧udFu|Fs

)

= Λs∧τ11τ≤s + 11s<τ
1

Gs
E

(∫ t

s

ΛudFu +
∫ ∞

t

ΛtdFu|Fs

)

= Λs∧τ11τ≤s + 11s<τ
1

Gs
E

(∫ t

s

ΛudFu + ΛtGt|Fs

)
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General case

We now use IP formula, using that Λ is bounded variation and continuous

d(ΛtGt) = −ΛtdFt + GtdΛt = −ΛtdFt + dAt
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General case

We now use IP formula, using that Λ is bounded variation and continuous

d(ΛtGt) = −ΛtdFt + GtdΛt = −ΛtdFt + dAt

hence
∫ t

s

ΛudFu + ΛtGt = −ΛtGt + ΛsGs + At −As + ΛtGt

= ΛsGs + At −As
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General case

From

E(Λt∧τ |Gs) = Λs∧τ11τ≤s + 11s<τ
1

Gs
E

(∫ t

s

ΛudFu + ΛtGt|Fs

)

and ∫ t

s

ΛudFu + ΛtGt = ΛsGs + At −As
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General case

From

E(Λt∧τ |Gs) = Λs∧τ11τ≤s + 11s<τ
1

Gs
E

(∫ t

s

ΛudFu + ΛtGt|Fs

)

and ∫ t

s

ΛudFu + ΛtGt = ΛsGs + At −As

it follows that

E(Λt∧τ |Gs) = Λs∧τ11τ≤s + 11s<τ
1

Gs
E (ΛsGs + At −As|Fs)
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General case

From

E(Λt∧τ |Gs) = Λs∧τ11τ≤s + 11s<τ
1

Gs
E

(∫ t

s

ΛudFu + ΛtGt|Fs

)

and ∫ t

s

ΛudFu + ΛtGt = ΛsGs + At −As

it follows that

E(Λt∧τ |Gs) = Λs∧τ11τ≤s + 11s<τ
1

Gs
E (ΛsGs + At −As|Fs)

= Λs∧τ + 11s<τ
1

Gs
E (At −As|Fs) .
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General case

From
E(Ht|Gs) = Hs + 11s<τ

1
Gs
E(At −As|Fs)

and
E(Λt∧τ |Gs) = Λs∧τ + 11s<τ

1
Gs
E (At −As|Fs)

we deduce
E(Ht − Λt∧τ |Gs) = Hs − Λs∧τ
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General case

The continuity of A is equivalent to the fact that τ is totally inaccessible.

Moreover, if A is absolutely continuous w.r.t. the Lebesgue measure, there exists an
F-adapted process λ, called the F-intensity such that the process

Ht −
∫ t∧τ

0

λudu = Ht −
∫ t

0

(1−Hu)λudu

is a G-martingale. The process λ satisfies

λt = lim
h→0

1
h

P(t < τ < t + h|Ft)
P(t < τ |Ft)

The G-intensity of τ is the G adapted process λG such that the process
Ht −

∫ t

0
λGudu is a G-martingale. Obviously λGt = 11t<τλt.
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General case

Computation in a restricted filtration

Let F̃ ⊂ F and G̃t = F̃t ∨Ht.

From
Ft = P(τ ≤ t|Ft)

we deduce
F̃t = P(τ ≤ t|F̃t) = E(Ft|F̃t)

The computation of the intensity is more difficult, the F̃- intensity in the restricted
filtration is not the conditional expectation of the F-intensity
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General case

This methodology provides a bridge between structural approach and reduced one:
starting with a structural model, where τ = inf{t : Xt ≤ 0} where the reference
filtration is the one generated by X, restricting the information to F̃, and/or adding
noise to the reference filtration leads to a reduced form model where the goal is to
compute the conditional law of τ given the information, or at least the quantity
P(τ > t|F̃t).
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(H) Hypothesis

(H) Hypothesis
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(H) Hypothesis

We now examine the immersion property (or (H)-hypothesis) which reads:

(H) Every F square-integrable martingale is a G square integrable
martingale.

This hypothesis implies that the F-Brownian motion remains a Brownian motion in
the enlarged filtration and that every F-local martingale is a G-local martingale .

This is equivalent to : For any t ∈ R+, we have

P(τ ≤ t | Ft) = P(τ ≤ t | F∞).
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(H) Hypothesis

Complete model case

We assume constant interest rate. Let S be a semi-martingale on (Ω,G,P) such
that there exists a unique probability Q, equivalent to P on FT , where
Ft = FS

t = σ(Ss, s ≤ t) such that (S̃t = Ste
−rt, 0 ≤ t ≤ T ) is an FS-martingale

under the probability Q.
We assume that there exists a probability Q̃, equivalent to P on GT such that
(S̃t, 0 ≤ t ≤ T ) is a G-martingale under the probability Q̃.
Then, any (F,Q)-martingale is a (G, Q̃)-martingale and the restriction of Q̃ to
FT is equal to Q.
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(H) Hypothesis

Change of a probability measure

Kusuoka shows, by means of a counter-example, that the hypothesis (H) is not
invariant with respect to an equivalent change of the underlying probability
measure, in general.
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Representation theorem

Representation theorem

Kusuoka establishes the following representation theorem, in the case where F is a
Brownian filtration. Under (H), any G-square integrable martingale admits a
representation as the sum of a stochastic integral with respect to the Brownian
motion and a stochastic integral with respect to the discontinuous martingale M .
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Representation theorem

Suppose that hypothesis (H) holds under P and that any F-martingale is
continuous. Then, the martingale Mh

t = EP(hτ | Gt) , where h is an F-predictable
process such that E(hτ ) < ∞, admits the following decomposition

Mh
t = mh

0 +
∫ t∧τ

0

eΓudmh
u +

∫

]0,t∧τ ]

(hu − Ju) dMu,

where mh is the continuous F-martingale

mh
t = EP

( ∫ ∞

0

hudFu | Ft

)
,

Jt = eΓt(mh
t −

∫ t

0
hudFu) is the predefault value of hτ and M is the discontinuous

G-martingale Mt = Ht − Γt∧τ .
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Representation theorem

Proof: : We know that

Mh
t = E(hτ | Gt)

= 11{τ≤t}hτ + 11{τ>t}eΓtE
( ∫ ∞

t

hudFu

∣∣∣Ft

)
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Representation theorem

Suppose that hypothesis (H) holds under P and that any F-martingale is
continuous. Then, the martingale Mh

t = EP(hτ | Gt) , where h is an F-predictable
process such that E(hτ ) < ∞, admits the following decomposition

Mh
t = mh

0 +
∫ t∧τ

0

eΓudmh
u +

∫

]0,t∧τ ]

(hu − Ju) dMu,

where mh is the continuous F-martingale

mh
t = EP

( ∫ ∞

0

hudFu | Ft

)
,

Jt = eΓt(mh
t −

∫ t

0
hudFu) is the predefault value of hτ and M is the discontinuous

G-martingale Mt = Ht − Γt∧τ .

58



Representation theorem

Proof: : We know that

Mh
t = E(hτ | Gt)

= 11{τ≤t}hτ + 11{τ>t}eΓtE
( ∫ ∞

t

hudFu

∣∣∣Ft

)

If F is a Brownian filtration, dmh
u = σh

udWu
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Representation theorem

Proof: : We know that

Mh
t = E(hτ | Gt)

= 11{τ≤t}hτ + 11{τ>t}eΓtE
( ∫ ∞

t

hudFu

∣∣∣Ft

)

= 11{τ≤t}hτ + 11{τ>t}eΓt

(
mh

t −
∫ t

0

hudFu

)

=
∫ t

0

hudHu + 11{τ>t}Jt .
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Representation theorem

Proof: : We know that

Mh
t = E(hτ | Gt)

= 11{τ≤t}hτ + 11{τ>t}eΓtE
( ∫ ∞

t

hudFu

∣∣∣Ft

)

= 11{τ≤t}hτ + 11{τ>t}eΓt

(
mh

t −
∫ t

0

hudFu

)

=
∫ t

0

hudHu + 11{τ>t}Jt .

From the facts that Γ is an increasing process
mh a continuous martingale

and using the integration by parts formula, we deduce that

dJt = eΓtdmh
t + (Jt − ht)

dFt

Gt
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Representation theorem

This theorem generalizes : if W is a F-Brownian motion which decomposes as

Wt = Bt +
∫ t

0

µsds

where B is a G-martingale (and a G Brownian motion), then, any G martingale
admits a decomposition as

Yt = y +
∫ t

0

ŷsdBs +
∫ t

0

ỹsdMs
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Intensity approach

Intensity approach

In the so-called intensity approach, the default time τ is a G-stopping time. The
intensity is defined as any non-negative process λ, such that

Mt
def
= Ht −

∫ t∧τ

0

λsds

is a G-martingale.
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Intensity approach

Intensity approach

In the so-called intensity approach, the default time τ is a G-stopping time. The
intensity is defined as any non-negative process λ, such that

Mt
def
= Ht −

∫ t∧τ

0

λsds

is a G-martingale.
The existence of the intensity relies on the fact that H is a sub-martingale and can
be written as M + A where M is a martingale M and A a predictable increasing
process.
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Intensity approach

Intensity approach

In the so-called intensity approach, the default time τ is a G-stopping time. The
intensity is defined as any non-negative process λ, such that

Mt
def
= Ht −

∫ t∧τ

0

λsds

is a G-martingale.
The existence of the intensity relies on the fact that H is a sub-martingale and can
be written as M + A where M is a martingale M and A a predictable increasing
process. The increasing process A is such that At11t≥τ = Aτ11t≥τ .
The intensity exists only if τ is a totally inaccessible stopping time.
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Intensity approach

Intensity approach

In the so-called intensity approach, the default time τ is a G-stopping time. The
intensity is defined as any non-negative process λ, such that

Mt
def
= Ht −

∫ t∧τ

0

λsds

is a G-martingale.
The existence of the intensity relies on the fact that H is a sub-martingale and can
be written as M + A where M is a martingale M and A a predictable increasing
process. The increasing process A is such that At11t≥τ = Aτ11t≥τ .
The intensity exists only if τ is a totally inaccessible stopping time.
We emphasize that, in that setting the intensity is not well defined after time τ ,
i.e., if λ is an intensity, for any non-negative predictable process g the process
λ̃t = λt11t≤τ + gt11{t>τ} is also an intensity.
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Intensity approach

If the process Yt = E
(
X exp

(
− ∫ T

0
λudu

)
|Gt

)
is continuous at time τ , then,

setting Lt = 11{t<τ}eΓt

E(X11{T<τ}|Gt) = 11{t<τ}E

(
X exp

(
−

∫ T

t

λudu

)
|Gt

)
= LtYt

If Y is not continuous

E(X11{T<τ}|Gt) = LtYt − E(∆Yτ11τ<T |Gt) .

It can be mentioned that the continuity of the process depends on the choice of λ

after time τ .
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Intensity approach

Proof: Setting

Ut = LtYt = 11t<τ exp
(∫ t

0

λsds

)
E

(
X exp

(
−

∫ T

0

λudu

)
∣∣Gt

)

we have UT = X11{T<τ} and

dUt = Lt−dYt + Yt−dLt + d[L, Y ]t = Lt−dYt + Yt−dLt + ∆Lt∆Yt

and
E(UT |Gt) = E(X11{T<τ}|Gt) = Ut − E(eΛτ ∆Yτ11τ<T |Gt) .
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Intensity approach

Then, for any X ∈ GT :

E(X11T<τ |Gt) = 11τ>t

(
eΛtE(e−ΛT X|Gt)− E(eΛτ ∆Yτ11τ<T |Gt)

)

where Yt = E (X exp (−ΛT ) |Gt) and Λt =
∫ t

0
λudu
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Cox Processes and Extensions

Cox Processes and Extensions

1. Construction of Default Time with a given Intensity

2. Properties
2.1 Conditional expectation
2.2. Key Lemma

3. Defaultable Assets
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Default Time with a given Intensity

Default Time with a given Intensity

Let (Ω,G,P) be a probability space endowed with a filtration F.
A nonnegative F-adapted process λ is given.
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Default Time with a given Intensity

Default Time with a given Intensity

Let (Ω,G,P) be a probability space endowed with a filtration F.
A nonnegative F-adapted process λ is given.
We assume that there exists a random variable Θ, independent of F∞, with an
exponential law: P(Θ ≥ t) = e−t.

72



Default Time with a given Intensity

Default Time with a given Intensity

Let (Ω,G,P) be a probability space endowed with a filtration F.
A nonnegative F-adapted process λ is given.
We assume that there exists a random variable Θ, independent of F∞, with an
exponential law: P(Θ ≥ t) = e−t.

We define the random time τ as the first time when the process Λt =
∫ t

0
λs ds is

above the random level Θ, i.e.,

τ = inf {t ≥ 0 : Λt ≥ Θ}.
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Default Time with a given Intensity

Default Time with a given Intensity

Let (Ω,G,P) be a probability space endowed with a filtration F.
A nonnegative F-adapted process λ is given.
We assume that there exists a random variable Θ, independent of F∞, with an
exponential law: P(Θ ≥ t) = e−t.

We define the random time τ as the first time when the process Λt =
∫ t

0
λs ds is

above the random level Θ, i.e.,

τ = inf {t ≥ 0 : Λt ≥ Θ}.

In particular, {τ > s} = {Λs < Θ}.
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Properties

Properties

Conditional Expectations

The conditional distribution function of τ given the σ-field Ft is for t ≥ s

P(τ > s|Ft) = exp (−Λs) .
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Properties

Properties

Conditional Expectations

The conditional distribution function of τ given the σ-field Ft is for t ≥ s

P(τ > s|Ft) = exp (−Λs) .

Proof : For s ≤ t,

P(τ > s|Ft) = P(Λs < Θ|Ft)

= Ψ(Λs)

where Ψ(x) = P(x < Θ).
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Properties

Key lemma

Let Y be an integrable r.v. Then,

11{τ>t}E(Y |Gt) = 11{τ>t}
E(Y 11{τ>t}|Ft)
E(11{τ>t}|Ft)

= 11{τ>t}eΛtE(Y 11{τ>t}|Ft).
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Properties

Key lemma

Let Y be an integrable r.v. Then,

11{τ>t}E(Y |Gt) = 11{τ>t}
E(Y 11{τ>t}|Ft)
E(11{τ>t}|Ft)

= 11{τ>t}eΛtE(Y 11{τ>t}|Ft).

If X ∈ FT

E(X11{τ>T}|Gt) = 11{τ>t} eΛtE(Xe−ΛT |Ft).
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Properties

Key lemma

Let Y be an integrable r.v. Then,

11{τ>t}E(Y |Gt) = 11{τ>t}
E(Y 11{τ>t}|Ft)
E(11{τ>t}|Ft)

= 11{τ>t}eΛtE(Y 11{τ>t}|Ft).

If X ∈ FT

E(X11{τ>T}|Gt) = 11{τ>t} eΛtE(Xe−ΛT |Ft).

The process λ is called the intensity of τ .
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Properties

In particular, one an check that
(i) The process Lt = 11t<τeΛt = (1−Ht)eΛt is a martingale
(ii) Let X be an F∞-measurable r.v.. Then

E(X|Gt) = E(X|Ft) .
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Properties

Stochastic Barrier

Suppose that
P (τ ≤ t|F∞) = 1− e−Γt

where Γ is an arbitrary continuous strictly increasing F-adapted process. Then, (H)
holds. Moreover, there exists a random variable Θ, independent of F∞, with
exponential law of parameter 1, such that τ

law= inf {t ≥ 0 : Γt > Θ}. In fact

Θ
def
= Γτ .
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Properties

Proof: Suppose that
P (τ ≤ t|F∞) = 1− e−Γt

where Γ is an arbitrary continuous strictly increasing F-adapted process.
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Properties

Proof: Suppose that
P (τ ≤ t|F∞) = 1− e−Γt

where Γ is an arbitrary continuous strictly increasing F-adapted process. Let us set
Θ

def
= Γτ . Then

{t < Θ} = {t < Γτ} = {Ct < τ},
where C is the right inverse of Γ, so that ΓCt = t.
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Properties

Proof: Suppose that
P (τ ≤ t|F∞) = 1− e−Γt

where Γ is an arbitrary continuous strictly increasing F-adapted process. Let us set
Θ

def
= Γτ . Then

{t < Θ} = {t < Γτ} = {Ct < τ},
where C is the right inverse of Γ, so that ΓCt = t. Therefore

P (Θ > u|F∞) = e−ΓCu = e−u.

We have thus established the required properties, namely, the probability law of Θ
and its independence of the σ-field F∞. Furthermore,
τ = inf{t : Γt > Γτ} = inf{t : Γt > Θ}.
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Properties

We now compute the expectation of the value at time τ of a predictable process.

(i) If h is an F-predictable (bounded) process then

E(hτ |Gt) = eΛtE
(∫ ∞

t

hudFu

∣∣∣Ft

)
11{τ>t} + hτ11{τ≤t}
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Properties

We now compute the expectation of the value at time τ of a predictable process.

(i) If h is an F-predictable (bounded) process then

E(hτ |Gt) = eΛtE
( ∫ ∞

t

hudFu

∣∣∣Ft

)
11{τ>t} + hτ11{τ≤t}

= eΛtE
( ∫ ∞

t

huλue−Λu du
∣∣∣Ft

)
11{τ>t} + hτ11{τ≤t}.
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Properties

We now compute the expectation of the value at time τ of a predictable process.

(i) If h is an F-predictable (bounded) process then

E(hτ |Gt) = eΛtE
( ∫ ∞

t

hudFu

∣∣∣Ft

)
11{τ>t} + hτ11{τ≤t}

= eΛtE
( ∫ ∞

t

huλue−Λu du
∣∣∣Ft

)
11{τ>t} + hτ11{τ≤t}.

In particular

E(hτ ) = E
( ∫ ∞

0

huλu exp
(− Λu) du

)

87



Properties

We now compute the expectation of the value at time τ of a predictable process.

(i) If h is an F-predictable (bounded) process then

E(hτ |Gt) = eΛtE
( ∫ ∞

t

hudFu

∣∣∣Ft

)
11{τ>t} + hτ11{τ≤t}

= eΛtE
( ∫ ∞

t

huλue−Λu du
∣∣∣Ft

)
11{τ>t} + hτ11{τ≤t}.

In particular

E(hτ ) = E
( ∫ ∞

0

huλu exp
(− Λu) du

)

(ii) The process (Mt := Ht −
∫ t∧τ

0
λsds, t ≥ 0) is a G-martingale.
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Properties

We now compute the expectation of the value at time τ of a predictable process.

(i) If h is an F-predictable (bounded) process then

E(hτ |Gt) = eΛtE
( ∫ ∞

t

hudFu

∣∣∣Ft

)
11{τ>t} + hτ11{τ≤t}

= eΛtE
( ∫ ∞

t

huλue−Λu
)
du

∣∣∣Ft

)
11{τ>t} + hτ11{τ≤t}.

In particular

E(hτ ) = E
( ∫ ∞

0

huλu exp
(− Λu) du

)

(ii) The process (Mt := Ht −
∫ t∧τ

0
λsds, t ≥ 0) is a G-martingale.

(iii) The martingale Lt = 11t<τeΛt satisfies dLt = −Lt−dMt.
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